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We consider a general kinetic model for a chain of three-state Potts spins. From 
the time-evolution operator we infer points in two-dimensional Potts systems 
where certain spin correlations have one-dimensional character and the model is 
exactly solvable. This occurs in square lattice models with different kinds of 
competing interactions. 
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1. I N T R O D U C T I O N  

In spin systems with competing interactions there can be points in the 
phase diagram where the spin correlation function changes, e.g., from 
monotonic to oscillatory behavior. In two dimensions, such "disorder 
points" were particularly studied in the triangular Ising antiferromagnet. (1) 
There it was found that right at the disorder point the correlation function 
becomes a simple exponential. This is typical of a one-dimensional system 
and, in fact, there is a close connection to a one-dimensional problem at 
that point(2): The relevant eigenvector of the transfer matrix has the form 
of a one-dimensional Boltzmann factor. In the dual picture it becomes a 
simple product state. This property is now widely used as the definition of 
a disorder point. However, we shall use the more precise term "one-dimen- 
sional point (or line)" (ODP,  ODL).  At an O D P  not only the correlation, 
but also the free energy is exactly known and usually very simple. In recent 
years, such points have been found in a large number  of two-dimensional (3) 
and even in three-dimensional (4'5) systems. Specifically, for Ports spins they 
were located on Kagom6, (6) triangular, (3'6) and checkerboard (6-8) lattices. 

1 Fachbereich Physik, Freie Universit/it Berlin, D-1000 Berlin 33, Germany. 

233 

0022-4715/86/1000-0233505.00/0 �9 1986 Plenum Publishing Corporation 



234 Pescheland Truong 

There are interesting connections to models of crystal growth, O'9'1~ 
cellular automata, ~4) and kinetic spin models ~2) which can be used to con- 
struct systems with ODPs. In the present work we shall use the latter 
method. It compares the transfer matrix of the two-dimensional system 
with the time-evolution operator of a suitable one-dimensional kinetic 
model. Thus, we shall start from a chain of three-state Potts spins, where 
one spin at a time is allowed to flip. This is a generalization of the kinetic 
Ising model ~ and we shall show that it is equally useful here to find 
ODPs. We shall locate them in an axial model with competing interactions 
in one direction and in a model with competition via diagonal crossed 
bonds. It will turn out that ODPs are in general harder to realize in Potts 
than in Ising systems. 

2. KINETIC POTTS C H A I N  

Consider a closed chain of N spins which take the values an = O, 1, - 1 
and are coupled by a nearest neighbor interaction -J3(an, a,,+l). The 
spins are best visualized as vectors in the complex plane which can assume 
the three directions given by m'~=exp[i(2n/3)a]. The simplest kinetic 
model is one where single spin rotations (flips) take place with certain rates 
and in such a way that the system approaches thermodynamic equilibrium. 
Such models have been studied so far with an emphasis on their dynamical 
critical behavior. O233) In our case, however, it is the structure of the time 
evolution operator that is of interest. To specify it, the various processes 
and their rates have to be fixed. We assume that the rates depend on the 
relative configuration of the spin in question and its two neighbors, and on 
the energetics of the transition, but not on the sense of rotation per se. 
Thus, we distinguish the processes shown in Fig. 1. Detailed balance is 
already built into our choice of the rates. This guarantees the approach 
toward equilibrium. 

The master equation for the probability p(~, t) to find a certain spin 
configuration ~ = a~, a2,..., an  at time t can then be written down. Actually, 
it is more convenient to work with the reduced probability 
fi(cr, t)= p(~r, t)/po1/2(~), where 

po(g) = exp I K  ~ 3(an, a , + l ) ]  

is the equilibrium distribution and K =  flJ. Then the operator T in the 
master equation 

~t p(~' t ) =  - T "  p(~, t) (2.1) 
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Fig. 1. Elementary spin-flip processes in the kinetic Potts chain. The middle spin undergoes 
flips as shown. The rates are given on the right of the figure; they depend on the orientation of 
the two neighboring spins. 

is Hermitian. It is obtained by writing down explicitly all the gain and loss 
processes shown in Fig. 1. For  this task the operators (14) 

tl i <o ot f 2 =  co , / ' =  0 0 1 

(.0 2 1 0 0 

(2.2) 

at each site are necessary and sufficient. The diagonal operators f2 n can be 
used to fix the direction of the spins in the initial or final state, while Fn 
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describes a clockwise rotation. A rather long, but straightforward 
calculation gives T in the form 

N 8 

T = -  ~ ~ v~O~ (2.3) 
n = l  c~ - - I  

where the new rates v~ and the operators O~ are given in the Appendix. The 
first four terms in T contain the rotation operators Fn and F + and corres- 
pond to the gain processes, while the rest consists of diagonal operators 
and describes the loss processes. Equation (2.3) generalizes the 
corresponding Ising result, (2'~5) where instead of Fn and f2, the Pauli 

x and z appear. matrices a n an 
Obviously, the operator T is quite complicated, but by construction 

the function p~/2(e~) is an eigenfunction of T with eigenvalue zero. For 
positive rates ei it is the lowest state. In this equilibrium state the spin 
correlation function is 

= exp( -K*n) ,  n>~0 (2.4) 

where K* is the dual coupling of K, defined by 

e -~c* = (e K -  1)/(e~ + 2) 

Normally, one is interested in the dynamics of such a model, i.e., in the 
time-dependent spin correlation functions. In the Ising case there exist two 
choices of the rates where the equations of motion close and analytical 
results are available/'5''6) Unfortunately, this does not happen in the 
present problem, because the equation of motion for, say, s immediately 
generates a large number of terms. 

As it stands, T can also be interpreted as the Hamilton operator of a 
quantum mechanical spin-one system. The same is true if one performs a 
dual transformation by introducing bond variables #,  via 

# n = a , , + l - a ,  (mod3)  (2.5) 

In terms of the operators this corresponds to the substitutions 

f2,f2++ l ---, 0++ ~, r ,  --. FnF++ x (2.6) 
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Thd dual operator TD then contains at most two-site terms and is of the 
form 

N 

To= -- ~ T.,.+, (2.7) 
r t = l  

where T,.,+I is obtained from ~= v~O~, with the help of (2.6). Basically it 
consists of terms where two neighboring dual spins are rotated plus several 
pair interactions and a field term linear in t2n. Finally, the state [p~/2) 
becomes the simple product state 

C [ I  {e K/2 I/~n =0> + I#,= 1> + Ikt,= -1>} (2.8) 
n 

Strictly speaking, there is a condition on the possible values of the #, 
because of the cyclic boundary condition rrN+I= al. For large systems, 
however, we can neglect this effect, The analogue of (2.7) in the Ising case 
is an operator that describes a spin-l/2 XYZ chain in a field. The product 
eigenstates of that system were also discovered directly {17) without the 
route via the kinetic model. 

In the following we shall use the direct form (2.3) and the dual form 
(2.7) to draw conclusions on two-dimensional Potts models. 

3. THE A N N N P  M O D E L  

In analogy to the well-known Ising case, O8"~9) one can study on a two- 
dimensional square lattice a system of Potts spins that has competing 
interactions along one (the x) direction and simple ferromagnetic interac- 
tions along the other direction. We call this model an axial next nearest 
neighbor Potts model (ANNNP). As competing interactions we choose a 
nearest neighbor coupling J1, a next nearest neighbor coupling J2, and a 
three-spin coupling J3 which favors three parallel adjacent spins. The row- 
to-row transfer matrix in the Hamiltonian limit of strong coupling J0 in the 
y direction and weak couplings Jl ,  ,/2, J3 then has the form V = exp( - H), 
where H is a one-dimensional quantum Hamiltonian, which can be 
expressed in terms of the (2 n and Fn as 

H= _~ [1 K,(F,, + F+ ) + (~ KI +~ K2) (s t + h.c. ) 

+ -~K2+-~K3 ( ~ L z + h . c . )  
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This coincides, up to an additive and a multiplicative constant, with the 
operator T of Section 2 if v2 = v3 = v4 = 0 (which gives ~i = ~) and if 

K1/K* = 2/3(2e K/z - e -K/2 - 1 ) (3.2a) 

Kz/K* = 1/3(2e K/2-  e x -  1) (3.2b) 

K3/K ~ = 1/3(3 + e x - 2e -K _ 4e/qZ + 2eK/2) (3.2c) 

For  this special choice of couplings (which corresponds to J l  > 0, J= < 0, 
J3 ~ 0), H therefore has the same eigenvalue spectrum as the kinetic model. 
In particular, the eigenvector of V corresponding to the largest eigenvalue 
is the state IPto/2), Thus, the spin correlation function in the x direction is 
given by the simple exponential of Eq. (2.4). The O D L  defined by 
Eqs. (3.2) is best visualized if one plots its projection into the plane of 
coupling constants. This is shown in Fig. 2, where also the phase boundary 
at zero temperature is indicated. The O D L  exists above the ferromagnetic 
phase and approaches the boundary to the region with high ground-state 
degeneracy at low temperatures. 

Our result shows a typical difference from the Ising case ( A N N N I  
model(Z)): Here the balance of three interactions is necessary to give a 

\ ~  0.5 
\ \,,,~ (0.06,6.9) GS:O0000 

\ \ \ ~  ]3/]1 

\\,,, ~ (0.09,4.2) 
\ / 

(degenerQte) I xx\ ~ . . . . . . . . . .  
I - I \ \  " ~ U . I /  sL.O J l a % U l  

, i I , , \'%1 I~N~  / I I / i 

\ (0.3,1.0) 
Fig. 2. ODL in the ANNNP model, projected down the temperature axis, onto the coupling 
constant plane. Some values for temperature t = K~/K1 and correlation length are given. The 
ground states are also indicated, where the label 2 stands for the value a, = -1 (mod 3) of the 
text. 
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whole ODL, while in the Ising case two are sufficient. This is intuitively 
clear, because Potts spins have more freedom and it will in general be har- 
der to obtain the delicate balance corresponding to one-dimensional 
behavior. For  J 3 = 0  it can be done only at the one point 
J2/J1 = - - ( . V / 3  - 1)/2, at one temperature. This O D P  is probably located 
on the true disorder line, which must exist on general grounds also for 
J3 = 0, but this could be checked only by a numerical calculation. 

One could carry out the same investigation away from the 
Hamiltonian limit, as in the Ising case, (3/but we shall not pursue this. 

4. SQUARE LATTICE POTTS MODEL WITH NEXT NEAREST 
INTERACTIONS 

Competition effects can also arise for spins on a square lattice that are 
coupled by nearest and next nearest neighbor bonds. The phase diagrams 
of such a model with Ising spins (2~ and Potts spins (21'=) have been studied. 
An ODL was found in the Ising case, using the diagonal-to-diagonal trans- 
fer matrix(Z3); here we use the same technique to locate an O D L for three- 
state Potts spins. 

Figure 3a shows an elementary square of the lattice with the three 
couplings we consider. We shall also use the notation 

u - =  e K~ T) 1 : e KI v2 ~ e K2 

Instead of treating the problem in the spin language, (8) it is advantageous 
to go over to a vertex formulation. As in Section 2, bond variables are 
introduced via # = (a' - a), #' = (a" - a), #" = (a'" - or"), and # "  = 
( a - a " ' ) .  Going once around the square gives the constraint (21~ 

# + / ~ ' + # " + # ' " = 0  ( m o d 3 )  (4.1) 

O' 0'--0 
p=-1 ~ g'=O 

0 0"" 0=I I ( ~ / , / ~  0"%0 

/ N  
~"'=*1 " ~ \ p"=O 

o"' o""= 0 

(a) (b) 

Fig. 3. (a) Labeling of spins and interactions in the square lattice model. (b) Example of a 
spin configuration and its corresponding vertex configuration. 

822/45/1 2-16 
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This rule determines a vertex model with 27 configurations of the #'s. It is 
best visualized by associating an in-going arrow with # = -1 ,  an outgoing 
one with # =  +1, and no arrow with /~=0. Figure 3b shows an example 
which has the Boltzmann weight uv2. Choosing /~, #' as an incoming 
variables defines the elementary (9x9)  transfer matrix V(~, #'//~", #'"). 
The complete transfer matrix consists of two rows of V's. Calling the 
bond variables in a row /~1, #2 ,..., #N and writing V,~,m+l= 
V(#m, #m + 1/#~,, /~, + 1), one has the complete transfer matrix as 

V= (l~I V2,,2,+1)(~I V2,+~,2n+2) (4.2) 

We now look for the possibility of having an eigenvector of the form (2.8) 
giving the largest eigenvalue of V. One way is to write down Vm,m+a 
explicitly in terms of the operators /2 and F at sites m, m + 1. Then one 
finds that V,,,,m + ~ has precisely the form of Tm,m + 1 that appears in the dual 
version of the kinetic model. The constants v~ are now determined by u, vl, 
and v2 and are given in the Appendix. Now, a product state is an eigenstate 
of each individual Vm,m + I or Tm,m + 1" Therefore, if T has such an eigenvec- 
tor, then V also has it, provided the constants vl,..., Vv in the two models 
coincide up to a common factor (the constant v 8 multiplying the unit 
operator is irrelevant). This gives the following two conditions for a 
product eigenvector: 

I) 2 -~- UD 2 -t- b/ + [ ' (U 2 - -  Ul) 2 - -  b/) 2 Jr- 8 / / ]  1/2 
vl = (4.2a) 

b/2~)2 -I- V 2 -}- 1 ~- [ ( / / 2 0 2  - -  V 2 - -  l )2 .dl_ 8 / , /2]  1/2 

{ ( u 2 v 2  - v 2  - 1) + [(u2v~ - v2 - 1)2 + 8u231/2} 

x { (Va-UV2-U)+ [ ( v 2 - u v 2 - u ) 2 + 8 u ] m } 2 = 8 u  2 (4.2b) 

A second way, which is also instructive, is to diagonalize Vm,m+l 
explicitly. This is easy, because Vm,m+ 1 decomposes into three (3x3)  
problems. Two of them are identical, which reflects the symmetry of the 
problem under arrow reversal ( # =  1 , - - , /~=-1) .  One finds three non- 
degenerate eigenvalues 

~1 = Vl (V2  - -  1 ) 

121 
e2,3 = ~  - {(u2v2+v2+ 1)-4- [(u2v2-vz  - 1)2 + 8u2] 1/2 } (4.3a) 

and three doubly degenerate ones 

~4 = U(/)2 - -  I ) 

1 
e5,6=~ {(uv2+u+v2)+_ [ ( u v 2 - v 2 -  1)2+8u]  1/2} (4.3b) 
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In general, the eigenvectors do not have the form (2.8). However, if 
e 2 = e s = e  [which is Eq. (4.2a)], the largest eigenvalue becomes triply 
degenerate. Equation (4.2b) then guarantees that one can form a linear 
combination that has the desired product form. Such a state leads to a spin 
correlation function of the form (2.4) along a horizontal zigzag line, with 
the parameter K determined by 

- -  / / 2 / ) 1 / ) 2  
e x p ( - K )  = (4.4) 

2U/) l 

Furthermore, the partition function per site is simply e. 

GS 

/ 0 ~ / 1  
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Fig. 4. ODL in the anisotropic square lattice; see caption of Fig. 2. The indicated tem- 
perature here is t = 1/K o. The ground states to the left are highly degenerate. 
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Equations (4.2) can be solved explicitly for the triangular lattice that 
results for J2 = 0, v 2 = 1. Then one recovers the known expression (3,6,7) for 
the ODL, 

vl = (1 + 2u)/(2 + u 2) (4.5) 

and furthermore K=Ko. Equation (4.5) always gives v1<1, which 
corresponds to an antiferromagnetic diagonal bond J1 competing with the 
bond Jo, which can be of either sign here. A similar formula even holds for 
arbitrary Potts spins. 

In general, Eqs. (4.2) have to be solved numerically. One then finds 
the ODL shown in Fig. 4, again projected onto the plane of coupling con- 
stants, using Jo > 0. We see that it lies above the ferromagnetic phase in the 
region J2 > 0. Thus, J1 < 0 competes against the combined effects of Jo and 
-/2. Contrary to the Ising case, ~21) there is no ODL (but there will be a dis- 
order line) for the isotropic system with J1 = J2 < 0. This shows again that 
in general the balance of three different couplings is necessary to produce 
an ODL in the Potts case. For large values of Jz~_and high temperatures) 
the ODL approaches the asymptote Jt/Jo = - ( x / 3 - 1 ) .  This is related to 
the results of Section 3. In fact, for J2 ~ oe the present model is equivalent 
to an ANNNP model in the Hamiltonian limit with couplings J6 ~ ---J2, 
jA = 2Jo, jA = J1, J;~ = 0. The ODP in this case was found exactly at the 
value of J1/Jo given above. 

The model we treated here is similar, but not identical to the checker- 
board lattice. In that case, ODPs were found using the spin picture and the 
formulation as an IRF model38) Our procedure is somewhat more explicit 
and also could be applied to other situations, for example, including four- 
spin couplings. 

5. C O N C L U S I O N  

We have shown how it is possible to connect kinetic spin chains, 
quantum Hamiltonians, and two-dimensional transfer matrices for the case 
of Potts spins with q = 3. We have found new ODPs and noticed that they 
are somewhat rarer here than in the corresponding Ising models. Our aim 
was not to give particularly simple criteria for the ODPs, but to display the 
structure of the operators involved and to use this information. We also 
have distinguished ODPs (which are rather special phenomena) from the 
disorder points (which are a more common feature of systems with com- 
peting interactions). The ODPs we studied represent only the simplest type. 
Others would correspond to staggered or to helical correlations in certain 
directions of the lattice. 
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APPENDIX 

The terms in the t ime-evolution opera tor  (2.3) are explicitly as 

9vl = (el + 2c%) + 2(c~ 2 + 2~4) 

9v2 = (~1 + 2c~3) - (~2 + 2~4) 

9v3 = (al - a3) + 2(c~2 - ct4) 

9v4 = (a, - a3) - (e2 - c~4) 

9v5 = - 2 ( c q  - c~2)- 2 a 3 ( e ~ + e  x) + 2c~4(eX/2 + e x/z) 

9v6 = (cq + 2c~2) + a3(e K -  2e K) _ 2~4(2eK/2 _ e-K/z) 

9v7 = (al - c~2) + ~3(e x -  2e -X )  + ea(2eK/2 _ e x/z) 

9v8 = - 2 ( c q  + 2cr - 2c~3(eX + e -K)  + 4~4(eX/= + e-K/2) 

o~= v .  + r+ 

02 = ( (2 ,_ ,  n.++ ~ + h.c.)(F,  + F + ) 

03  = (co*t?._ 1 f2. f2. + 1 + h.c.) F ,  + h.c. 

O,4 - [ c o ( f 2 . -  - 1 + f2. + 1) s + h.c.] F,, + h.c. 

5 _ _  O,  - (2,,_ 1 (2++ 1 +h .c .  

6 _  +h .c .  O n - - O  n l ~ ' 2 n O n  + 1 

7 _  ((2._ l + 12.+1 ) s +h .c .  0 n - -  

8__ 0 . - 1  

with h.c. denot ing the Hermit ian  conjugate. The dual form of the operators  
follows from the substi tutions (2.6) and the relations (22= 12 + and s 1. 

For  the elementary transfer matrix V.,. + 1 of  Section 4 the coefficients 
vl,..., v4 are obtained by setting 

0C1 ~ /)1 ; 0~2 ~ '~/; ~ 3  ~ U/ ) I  ~ (X4 ~ 

in the above equations. The remaining coefficients are given by 

9 v s = v l v 2 ( 2 +  u 2 ) - v 2 ( 1  + 2 u )  

9v6 = VlV2(u 2 -  1) + 2v2(1 - u) 

9v7 = vl v2(u 2 - 1) - v2(1 - u) 

9vs = v~v2(2 + u 2) + 2v2(1 + 2u) 
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